
Physics, stability, and dynamics of supply networks

Dirk Helbing,* Stefan Lämmer, and Thomas Seidel
Dresden University of Technology, Andreas-Schubert-Strasse 23, 01069 Dresden, Germany

Pétr Šeba
Institute of Physics, Czech Academy of Science, Cukrovarnická 10, 162 53 Prague, Czech Republic

Tadeusz Płatkowski
Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

(Received 11 May 2004; revised manuscript received 9 September 2004; published 7 December 2004)

We show how to treat supply networks as physical transport problems governed by balance equations and
equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized
set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks.
Supply networks possess interesting features due to their complex topology and directed links. We derive
analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in
supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is
generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the
network structure(even without loops). Therefore, their generic behavior is characterized by damped or
growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only,
but perturbations generate a spectrum of complex eigenvalues.
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Econophysics has stimulated a lot of interesting research
on problems in finance and economic systems[1], applying
methods from statistical physics and the theory of complex
systems. Recently, the dynamics of supply networks[2–4],
i.e., the flow of materials through networks, has been identi-
fied as an interesting physical transport problem[3–5], which
is also reflected by the notion of “factory physics”[6]. Po-
tential applications reach from production networks to busi-
ness cycles, from metabolic networks to food webs, up to
logistic problems in disaster management[7]. Empirical and
theoretical studies have shown that the flow of goods be-
tween different producers or suppliers can be described
analogously to driven many-particle flows between sources
and sinks(depots), where the particles represent materials,
goods, or other resources. In contrast to the stationary behav-
ior assumed by most production engineers, this flow may
display a complex dynamics in time, including oscillatory
patterns and chaos[8,9]. A particular focus has been on the
empirically observed and well-knownbullwhip effect
[3,5,9–11], which describes the amplification of the oscilla-
tion amplitudes of delivery rates in supply chains compared
to the variations in the consumption rate of goods.

A promising approach to the nonlinear interactions and
dynamics of supply chains is based on fluid-dynamic models
[5,10], which are related to macroscopic traffic models[3–5].
In contrast to classical approaches like queuing theory and
event-driven simulations, they are better suited for on-line
control under dynamically changing conditions. These fluid-
dynamic models have recently been generalized to cope with

discrete spaces(production steps) [3,5]. However, the impact
of the topology of supply networks, connecting the subject to
the statistical physics of networks[12], has not yet been
thoroughly investigated. Its relevance for the stability and
dynamics of supply networks will, therefore, be the main
focus of this paper. Here, we will specifically concentrate on
analytical results for the dynamic behavior in the linear re-
gime around the usually assumed stationary state, while non-
linear effects are investigated elsewhere[3]. The correspond-
ing equations can be mapped onto the ones of particular
mechanical or electrical networks, but supply networks are
generally more complex and their nonlinear dynamics is dif-
ferent. In particular, supply networks are directed and pos-
sess other characteristic topologies[13]. Hence, our analyti-
cal investigation yields interesting results. Apart from a
generalization of the bullwhip effect from sequential supply
chains to networks, they allow us to explain various surpris-
ing features of numerical simulations of supply networks.

(i) The bullwhip effect can occur even though the eigen-
values of sequential supply chains are negative.

(ii ) Supplynetworkstend to show oscillations, even with-
out loops in the material flows.

(iii ) Regular distribution networks are characterized by
two negative eigenvalues, but random perturbations in the
network structure cause a spectrum of oscillating modes.

Our simplified model of supply networks consists ofu
suppliersi delivering products to other suppliersj or con-
sumers. The suppliersj (e.g., production units of a plant or
company) will be assumed to deliver products, resources, or
materialsk at a certain ratedkjXjstd. Their demand of goods
of kind i from other suppliersj is given bycijXjstd, where
0øcij ø1. The proportionalitycijXjstd to the production rate
Xjstd of productsj reflects that a quantitycij of producti is
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needed to produce one unit of productj . The coefficientscij
define an input matrixC=scijd and dij an output matrixD.
The interactions among the different suppliersi and j are
represented by the supply matrix

S= D − C. s1d

In addition, we need to consider the inventories, stock levels,
or availability Nistd of products, materials, or resourcesi.

Our model for the dynamics of supply networks consists
of two sets of equations, one for the change of inventories
Nistd with time t and another one for the adaptation of the
delivery or production ratesXjstd of the suppliers or produc-
tion units j . The inventoriesNistd of goods of kind i are
described by material balance equations for the flows of
goods, which could be viewed as a discontinuous version of
the continuity equation(see Fig. 1):

s2d

Additionally, we have

0 ø cij ,dij ø 1 s1 ø i, j ø ud s3d

and the “normalization conditions”

di0 = 1 −o
k=1

u

dik ù 0,

ci,u+1 = 1 −o
j=1

u

cij ù 0. s4d

Frequently, one assumesdij =di j with di j =1 for i = j and di j
=0 otherwise[3]. This corresponds to situations in which
production units or suppliers are defined such that they de-
liver one kind of good only. The quantity

s5d

comprises the consumption rate of goodsi, losses, and waste
(the “export” of material), minus the inflows into the consid-
ered system(the “imports”).

Changes in the demandYistd sooner or later require an
adaptation of the production ratesXjstd. This adaptation takes

time (to determine the change in demand, to finish the plan-
ning process and administrative steps, and to adapt orders
and production capacities). We will reflect this by an adap-
tation timeT and assume that the change in the production
rate is proportional to the deviation of the actual production
rate Xj from the desired oneWjshNij ,hdNi /dtjd, which de-
pends on the inventoriesNi and their changesdNi /dt in time:

dXj

dt
=

1

T
FWjShNij,HdNi

dt
JD − XjstdG . s6d

Although a more general treatment is possible, we will first
focus on cases where the delivery rateXj of supplier j is
adapted only to the inventoryNi of the dominant producti
given bydij =maxk dkj. Moreover, we will enumerate suppli-
ers j according to their dominating productsi, which implies
j = i. The resulting adaptation equation

dXi

dt
=

1

T
FWiSNi,

dNi

dt
D − XistdG s7d

still implies an indirect dependence on the production and
delivery ratesXj of other suppliersj Þ i via the dependence
on dNi /dt [see Eq.(2)].

In order to gain analytical results, we will assume for the
desired production rateWisNi ,dNi /dtd that (i) it is non-
negative and decreasing with increasing inventories,(ii ) it is
proportional to the steady-state inventoryNi, and (iii )it re-
sponds to the relative deviationNi /Ni of the inventoryNi
from the steady-state inventoryNi and to the relative change
sdNi /dtd /Nistd of the inventory in time. This suggests the
scaling relation

WiSNi,
dNi

dt
D < nNiPSNi

Ni

,
1

Ni

dNi

dt
D s8d

with a scaling functionP which, for simplicity, is assumed to
be identical for all sectors. The stationary valueNi of the
inventoryNi can be easily determined by solving the linear
system of equations

Ȳi = o
j=1

u

sdij − cijdX̄j = nPs1,0do
j=1

u

sdij − cijdN̄j , s9d

whereȲi denotes the time average of the demandYistd, while

X̄i and N̄i denote the stationary values corresponding to the

caseYi =Ȳi. The stationary solution is, therefore, given by

N̄i =
1

nPs1,0doj

sD − Cdi j
−1Ȳj ,

X̄i = WisN̄i,0d = nN̄iPs1,0d, s10d

where sD−Cd−1 represents the inverse matrix ofsD−Cd.
Note that, by appropriate choice ofn, one can setPs1,0d
=1.

Since we want to know whether the stationary state of the
supply network is stable, as is often implicitly assumed in
queuing theory, we will focus on what happens in the case of
small deviations

FIG. 1. Schematic illustration of the structure of the proposed
supply network model: Suppliers(box) deliver commodities ac-
cording to the output matrixD and thereby increase the market’s

inventory levelNW (bowl). Commodities available on the market can
either reenter other suppliers according to the input matrixC or

leave the cycle for final consumptionYW .
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xistd = fXistTd − X̄igT,

nistd = NistTd − N̄i ,

yistd = fYistTd − ȲigT s11d

from it. Here, we have introduced a scaling of the model
variables to dimensionless units. For example,t= t /T is a
dimensionless time, i.e., in the following we will measure the
time in units ofT. Close to equilibrium, we can linearize the
model equations. In matrix notation they read

d

dt
SnWstd

xWstd
D = MSnWstd

xWstd
D + S− yWstd

ByWstd
D s12d

with

M = S 0, S

− AE, − E − BS
D . s13d

Here,

A = − nT
]Ps1,0d

]z1
,

BT= − nT
]Ps1,0d

]z2
s14d

denote the negative values of the partial derivatives of
TWisNi ,dNi /dtd with respect to the first variable

z1 =
Ni

Ni

s15d

and the second one

z2 =
dNi/dt

Ni
=

dNi/dt

NiT
s16d

in the equilibrium pointsNi ,dNi /dtd=sNi ,0d. The negative
signs reflect thatA andB are typically positive, as the pro-
duction rate should decrease when the inventory increases.

The above linear system of coupled differential equations
is a quite general approach to the study of supply networks
and material flows close to the stationary state[14]. It de-
scribes the response of delivery rates to a variationyWstd in
the consumption rate and can be derived from various non-
linear supply chain models which differ in their degree of
detail concerning the consideration of forecasts[4], price dy-
namics[3,13], or lack of materials[3]. Therefore, it is worth
investigating the dependence on the dimensionless param-
etersA and B, and on the structure of the supply network
characterized byS. The system of 2u differential equations
can also be written as a system ofu second-order differential
equations

d2xW

dt2 + fE + BSg
dxW

dt
+ ASxWstd = gWstd, s17d

where

gWstd = AyWstd + B
dyW

dt
. s18d

Note that there exists a matrix
T which allows one to transform the input matrixC or, more
generally, the matrixE−S=C+sE−Dd via

T−1sE − SdT = J s19d

into either a diagonal or a Jordan normal formJ (see Fig. 2).
Defining

mW std = T−1xWstd,

hWstd = T−1gWstd, s20d

we obtain the coupled set of second-order differential equa-
tions

d2mi

dt2 + 2gi
dmi

dt
+ vi

2mi = biSBmi+1 + A
dmi+1

dt
D + hi ,

s21d

where

gi = f1 + Bs1 − Jiidg/2,

vi = fAs1 − Jiidg1/2,

bi = Ji,i+1. s22d

This can be interpreted as a set of equations for linearly
coupled damped oscillators with damping constantsgi,
eigenfrequenciesvi, and external forcinghistd. The other
forcing terms on the right-hand side are due to interactions of
suppliers. They appear only ifJ is not of diagonal but of
Jordan normal form. Because ofbi =Ji,i+1, Eqs.(21) can al-
ways be analytically solved in a recursive way, starting with
the highest indexi =u. Note that, in the caseD=E (i.e.,
dij =di j), Jii are the eigenvalues of the input matrixC and

0 ø uJii u ø 1. s23d

Equation(21) has a special periodic solution of the form

mistd = mi
0eisat−bid,

FIG. 2. (Color online) (a) Example of a regular distribution
network.(b)–(d) Matrix T allows one to transform the input matrix
C=E−S into a matrixJ of Jordan normal form.
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histd = hi
0eiat, s24d

wherei =Î−1 denotes the imaginary unit. Inserting this into
Eq. (21) and dividing byeiat immediately gives

s− a2 + 2iagi + vi
2dmi

0e−ibi = bisA + iaBdmi+1
0 e−ibi+1 + hi

0.

s25d

With e±if=cossfd± i sinsfd this implies

mi
0e−ibi =

bisA + iaBdmi+1
0 e−ibi+1 + hi

0

− a2 + 2iagi + vi
2

=
ÎRe2 + Im2eiri

Îsvi
2 − a2d2 + s2agid2eiwi

, s26d

where

Re =bimi+1
0 fA cossbi+1d + aB sinsbi+1dg + hi

0,

Im = bimi+1
0 faB cossbi+1d − A sinsbi+1dg. s27d

Moreover,

mi
0 =ÎfA2 + saBd2gsbimi+1

0 d2 + hi
0Hi + shi

0d2

svi
2 − a2d2 + s2agid2 s28d

with

Hi = 2bimi+1
0 fA cossbi+1d + aB sinsbi+1dg. s29d

Finally, we have

bi = wi − ri s30d

with

tanwi =
2agi

vi
2 − a2 s31d

and

tanri =
bimi+1

0 faB cossbi+1d − A sinsbi+1dg
bimi+1

0 fA cossbi+1d + aB sinsbi+1dg + hi
0 . s32d

For hi
0=0, we obtain

tanswi − bid = tansd − bi+1d s33d

with

tand =
aB

A
, s34d

i.e., the phase shift betweeni and i +1 is just

bi − bi+1 = wi − d. s35d

According to Eq.(21), the dynamics of our supply net-
work model can surprisingly be reduced to the dynamics of a
linear(sequential) supply chain(see Fig. 3), but with the new
entities i having the meaning of “quasisuppliers”(analo-
gously to “quasispecies”[15,16]) defined by the linear com-
bination mW std=T−1xWstd. This transformation makes it pos-
sible to define the bullwhip effect for arbitrary supply
networks: It occurs if the amplitudemi

0 is greater than the

oscillation amplitudemi+1
0 of the next downstream supplier

i +1 and greater than the amplitudehi
0 of the external forcing,

i.e., if

mi
0

maxsmi+1
0 ,hi

0d
. 1. s36d

This resonance effectcorresponds to the case ofconvective
instability. According to formula(28), the bullwhip effect is
particularly likely to appear, if the oscillation frequencya of
the consumption rate is close to one of the resonance fre-
quenciesvi.

Depending on the respective network structure, it can also
happen that the oscillation amplitude ofmW std is amplified in
the course of time(see Fig. 4). This case ofabsolute insta-
bility can occur if at least one of the eigenvaluesli,± of the
homogeneous equation(21) resulting for hi =bi =0 has a
positive real part. The(up to) 2u eigenvalues

li,± = − gi ± Îgi
2 − vi

2 s37d

depend on the(quasi) supplieri and determine the temporal
evolution of the amplitude of deviations from the stationary
solution.

One can distinguish various interesting cases.
(i) If the supply matrixS is symmetric, as for most me-

chanical or electrical oscillator networks, all eigenvaluesJii
are real. Consequently, ifvi ,gi (i.e., if A is small enough),
the eigenvaluesli,± of M are real and negative, correspond-
ing to an overdamped behavior. However, ifB is too small,
the system behavior may be characterized by damped oscil-
lations.

(ii ) Most natural and man-made supply networks have
directed links, andS is not symmetric. Therefore, some of
the eigenvaluesJii will normally be complex, and an over-
damped behavior is untypical. The characteristic behavior is
rather of oscillatory nature(although asymmetry does not
always imply complex eigenvalues[13]). For small values of
B, it can even happen that the real part of an eigenvalueli,±

FIG. 3. In the proposed supply network model, an arbitrary
network topology(a) can be transformed into a sequential supply
chain(b) of “quasisuppliers” with potentially complex eigenvalues.
The couplingbi corresponds to the superdiagonal elementsJi,i+1,
which are either 0 or 1. It is therefore possible to find several
uncoupled chains of smaller size.

FIG. 4. Empirical example for a temporal amplification in the
oscillation amplitude of the weekly order flow of a major company
around its average(g=0.05,v=2p /T with T=2 weeks).
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becomes positive. This implies an amplification of the oscil-
lations in time(until the oscillation amplitude is limited by
nonlinear terms). Surprisingly, this also applies to most upper
triangular input matrices, i.e., when no loops in the material
flows exist.

(iii ) Another relevant case is sequential supply chains and
regular supply networks[see, e.g., Fig. 2(a)]. These are
mostly characterized by degenerate zero eigenvaluesJii =0
and Jordan normal formsJ, i.e., nonvanishing upper-
diagonal elementsJi,i+1. Sequential supply chains and regular
distribution systems belong to this case, which is character-
ized by the twou-fold degenerate eigenvalues

l± = − s1 + Bd/2 ± Îs1 + Bd2/4 − A s38d

independently of the suppliersi. For small enough values
A, s1+Bd2/4, these systems show overdamped behavior,
otherwise damped oscillations.

Note that already very small perturbations in the network
structure can qualitatively change the dynamics of supply
networks. In case(iii ), for example, they cause a cluster of
complex eigenvalues around the two negative eigenvaluesl±
(if A is small, see Fig. 5). How can we explain this interest-
ing observation? We may useGeršgorin’s theoremon the
location of eigenvalues[17]. Applying it to the perturbed
matrix

Bh = E − S+ hP, s39d

for small enough values ofh, the corresponding eigenvalues
should be located within disks of radius

Rishd = ho
j

uPij
shdu s40d

around the eigenvaluesJii of the original matrixE−S. This
radius grows monotonously, but not necessarily linearly in
the parameterh with 0,hø1, which allows to control the
size of the perturbation. Moreover,Pshd=Rh

−1PRh, whereRh

is the orthogonal matrix which transformsBh to a diagonal
matrix Dshd, i.e., Rh

−1BhRh=Dshd. (This assumes a perturbed
matrix Bh with no degenerate eigenvalues.) Similar disks as
for the eigenvalues ofBh can be determined for the associ-
ated eigenvaluesli,±

shd of the perturbeds2u32ud matrix M h

belonging to the perturbedu3u matrix Bh [see Eq.(13) and
Fig. 5].

In summary, this contribution has shown how supply sys-
tems can be modeled by equations for material flows in net-
works. We could explain the empirically observed bullwhip
effect as a convective instability phenomenon based on a
resonance effect and generalize it from sequential supply
chains to arbitrary supply networks, as these can be trans-
formed to supply chains for “quasisuppliers.” However, the
eigenvalues may become complex. The dynamics of supply
networks depends very sensitively on their topology and two
parametersA and B, which are related to derivatives of the
“control function” WisNi ,dNi /dtd of the delivery rates. In
contrast to most systems of mechanical or electrical oscilla-
tors, supply networks have directed links and are asymmet-
ric. Therefore, most supply networks are expected to show a
damped or growing oscillatory behavior, even without loops.
Although negative eigenvalues are found for regular distri-
bution networks and supply chains, already small perturba-
tions of the network structure will cause a spectrum of com-
plex eigenvalues, i.e., a qualitative change in the dynamics.
Our current research focuses on the application to empirical
input-output data and business cycles[13], on nonlinear
properties of supply networks, and applications to disaster
management with a lack of resources[7].
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