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Physics, stability, and dynamics of supply networks
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We show how to treat supply networks as physical transport problems governed by balance equations and
equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized
set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks.
Supply networks possess interesting features due to their complex topology and directed links. We derive
analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in
supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is
generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the
network structure(even without loops Therefore, their generic behavior is characterized by damped or
growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only,
but perturbations generate a spectrum of complex eigenvalues.
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Econophysics has stimulated a lot of interesting researctiscrete space@roduction steps[3,5]. However, the impact
on problems in finance and economic systddis applying  of the topology of supply networks, connecting the subject to
methods from statistical physics and the theory of complexhe statistical physics of networkd2], has not yet been
systems. Recently, the dynamics of supply netwdgks4], thoroughly investigated. Its relevance for the stability and
i.e., the flow of materials through networks, has been identidynamics of supply networks will, therefore, be the main
fied as an interesting physical transport prob[&+5], which  focus of this paper. Here, we will specifically concentrate on
is also reflected by the notion of “factory physid$]. Po-  analytical results for the dynamic behavior in the linear re-
tential applications reach from production networks to busi-gime around the usually assumed stationary state, while non-
ness cycles, from metabolic networks to food webs, up tdinear effects are investigated elsewhg8k The correspond-
logistic problems in disaster managemegrit Empirical and  ing equations can be mapped onto the ones of particular
theoretical studies have shown that the flow of goods bemechanical or electrical networks, but supply networks are
tween different producers or suppliers can be describedenerally more complex and their nonlinear dynamics is dif-
analogously to driven many-particle flows between sourceferent. In particular, supply networks are directed and pos-
and sinks(depot3, where the particles represent materials,sess other characteristic topolog[éS]. Hence, our analyti-
goods, or other resources. In contrast to the stationary behaval investigation yields interesting results. Apart from a
ior assumed by most production engineers, this flow mayeneralization of the bullwhip effect from sequential supply
display a complex dynamics in time, including oscillatory chains to networks, they allow us to explain various surpris-
patterns and chads8,9]. A particular focus has been on the ing features of numerical simulations of supply networks.
empirically observed and well-knownbullwhip effect (i) The bullwhip effect can occur even though the eigen-
[3,5,9-11, which describes the amplification of the oscilla- values of sequential supply chains are negative.
tion amplitudes of delivery rates in supply chains compared (ii) Supplynetworkstend to show oscillations, even with-
to the variations in the consumption rate of goods. out loops in the material flows.

A promising approach to the nonlinear interactions and (iii) Regular distribution networks are characterized by
dynamics of supply chains is based on fluid-dynamic modelswo negative eigenvalues, but random perturbations in the
[5,10], which are related to macroscopic traffic mod@s5].  network structure cause a spectrum of oscillating modes.

In contrast to classical approaches like queuing theory and Our simplified model of supply networks consists wf
event-driven simulations, they are better suited for on-linesuppliersi delivering products to other suppliejsor con-
control under dynamically changing conditions. These fluid-sumers. The suppliejs(e.g., production units of a plant or
dynamic models have recently been generalized to cope witbtompany will be assumed to deliver products, resources, or
materialsk at a certain ratel;X;(t). Their demand of goods
of kind i from other supplierg is given byc;X(t), where
*Electronic address: helbing@trafficforum.org 0=gcj;=<1. The proportionality;; X;(t) to the production rate
URL: http://www.helbing.org X;(t) of productsj reflects that a quantity; of producti is
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C =1 D ~ 1% time (to determine the change in demand, to finish the plan-
X |1, N | ning process and administrative steps, and to adapt orders
and production capacitipsWe will reflect this by an adap-

tation timeT and assume that the change in the production
FIG. 1. Schematic illustration of the structure of the proposedrate is proportional to the deviation of the actual production

supply network model: Supplierébox) deliver commodities ac- rate X; from the desired on&V;({N;},{dN,/dt}), which de-

cording to the output matri0 and thereby increase the market's pends on the inventoridd and their changedN,/dt in time:

inventory levelN (bowl). Commodities available on the market can ax 1 dN
either reenter other suppliers according to the input mag@rier il [ _|:VVJ<{NI}{_}) —Xj(t)] (6)
leave the cycle for final consumption dt T dt

Although a more general treatment is possible, we will first
needed to produce one unit of prodyciThe coefficientss; focus on cases where the delivery ratgof supplierj is
define an input matrixC=(c;) andd; an output matrixD.  adapted only to the inventory; of the dominant product
The interactions among the different suppliérand j are  given byd;;=max, d,;. Moreover, we will enumerate suppli-
represented by the supply matrix ersj according to their dominating produdtswhich implies

j=i. The resulting adaptation equation

S=D-C. (1)
. . . . dx 1 dN,
In addition, we need to consider the inventories, stock levels, — = | Wi N;,— | = X(t) (7)
or availability N;(t) of products, materials, or resources e T dt

Our model for the dynamics of supply networks consistsstj|| implies an indirect dependence on the production and
of two sets of equations, one for the change of inventoriegelivery ratesX; of other supplierg #i via the dependence
N;(t) with time t and another one for the adaptation of the g, dN./dt [see Eq(2)].
delivery or production rateX;(t) of the suppliers or produc-  |n order to gain analytical results, we will assume for the
tion units j. The inventoriesN;(t) of goods of kindi are  desired production rat&Vi(N;,dN./dt) that (i) it is non-
described by material balance equations for the flows ohegative and decreasing with increasing invento(iegit is
goods, which could be viewed as a discontinuous version gbroportional to the steady-state inventdsy, and (iii )it re-

the continuity equatiorisee Fig. X sponds to the relative deviatiaN;/N; of the inventoryN;
inflow reentrant outflow from the steady-state inventol; and to the relative change
—_— (dN;/dt)/N;(t) of the inventory in time. This suggests the
dN;, < : scaling relation
D7 > dXi(t) = [E ciXi(0) + Yi(f)] .
L ket 1 dN, — [N; 1dN
_ d VVI Ni,_ xVNiP =, (8)
supply demand (2) dt Ni Ni dt
Additionally, we have with a scaling functiorP which, for simplicity, is assumed to
o d < i be identical for all sectors. The stationary valNg of the
O=<cjdj=1 (I=<ij=u () inventoryN, can be easily determined by solving the linear
and the “normalization conditions” system of equations
u _ u o u o
dp=1-2 dy =0, Yi:zl(dij _Cij)xi:VP(lyo)Zl(dij —cp)N;, (9
k=1 = j=

" where?i denotes the time average of the demai(t), while
Cu=1-> c; =0. (4) X; andN; denote the stationary values corresponding to the
' j=1 caseY;=Y,. The stationary solution is, therefore, given by
Frequently, one assumelg=¢; with ;=1 for i=j and g — =
=0 otherwise[3]. This corresponds to situations in which N; = P O)E- (D-C)yYj,
production units or suppliers are defined such that they de- )
liver one kind of good only. The quantity

V0= CrunXun® = digXo(0) X =Wi(N; 0 = »NiP(L.0), (10
Con—'—sumpﬁon o Josees inflow of resources (5) where (D-C)™? represents the inverse matrix 6D-C).

Note that, by appropriate choice of one can seP(1,0)
comprises the consumption rate of goodesses, and waste =1,
(the “export” of materigl, minus the inflows into the consid-  Since we want to know whether the stationary state of the
ered systengthe “imports”. supply network is stable, as is often implicitly assumed in
Changes in the demand(t) sooner or later require an queuing theory, we will focus on what happens in the case of
adaptation of the production rat¥gt). This adaptation takes small deviations
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I

X(1) =[X(T) = X]T, ® ®

(0 =N,(7T) = N;,

yi(n) =[Yi(7T) = Y{]T (11)
) ) ) © P @ [~
from it. Here, we have introduced a scaling of the model e e
variables to dimensionless units. For examptet/T is a oo i - f

dimensionless time, i.e., in the following we will measure the
time in units of T. Close to equilibrium, we can linearize the %1
model equations. In matrix notation they read

d (n(7) _ n(7) - y(7) FIG. 2. (Color online (a) Example of a regular distribution
-\ - Vi + > (12) network.(b)—«d) Matrix T allows one to transform the input matrix
dr\X(7) X(7) By(7) ) .
C=E-S into a matrixJ of Jordan normal form.
with
N . dy
M:( 0. 'S )_ 13 Gi(r) =AY +B. (19
-AE, -E-BS T
Here Note that there exists a matrix
' T which allows one to transform the input matxor, more
A TaP(l,O) generally, the matrbE-S=C+(E-D) via
=/ s
07 TYE-9T=1J (19
into either a diagonal or a Jordan normal foinisee Fig. 2.
dP(1,0) .
BT=-»T pe (14 Defining
2

. . — wn =T X(7),
denote the negative values of the partial derivatives of
TW(N;,dN,/dt) with respect to the first variable

h(n) =T74(), (20)
7= i (15)  we obtain the coupled set of second-order differential equa-
N; tions
and the second one d?w dui du;
=B 2yt 02 =by| By + AL | 4,
d7? d ! d
L= dN/dt _ dN/dr (16 T T
27N, ONT (21)
in the equilibrium point(N;,dN/d)=(N;,0). The negative Where
sign_s reflect thalA and B are typically po_sitive, as 'ghe pro- vi=[1+B(1-3)l2,
duction rate should decrease when the inventory increases.
The above linear system of coupled differential equations w; =[A1 -J3)]?,
is a quite general approach to the study of supply networks
and material flows close to the stationary stgltd]. It de- ERT (22)

scribes the response of delivery rates to a variafion in _ ) _ _

the consumption rate and can be derived from various nonlhis can be interpreted as a set of equations for linearly
linear supply chain models which differ in their degree ofcoupled damped oscillators with damping constants
detail concerning the consideration of forecqdls price dy- ~ €igenfrequenciess;, and external forcindy(7). The other
namics[3,13, or lack of material§3]. Therefore, it is worth ~ forcing terms on the right-hand side are due to interactions of
investigating the dependence on the dimensionless pararfuppliers. They appear only & is not of diagonal but of
etersA and B, and on the structure of the supply network Jordan normal form. Because bf=J; .1, Egs.(21) can al-
characterized by. The system of @ differential equations Ways be analytically solved in a recursive way, starting with
can also be written as a systemws$econd-order differential  the highest index=u. Note that, in the cas®=E (i.e.,

equations dij= &), J;i are the eigenvalues of the input mat@xand
% dx 0<|[J|=<1. (23
a2 t[E+ BS]E— +ASK(7) =4(7), (17 Equation(21) has a special periodic solution of the form
where pi(7) = ppel e,
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hi(7) = h%&*7, (24)

wherei=1-1 denotes the imaginary unit. Inserting this into
Eqg. (21) and dividing by€'*t immediately gives

2, o 2y 0 -ifi — ; 0 B 0 )
(- o+ Ziay + o) e P = b(A+iaB) uiy,e i+ by, FIG. 3. In the proposed supply network model, an arbitrary
(25 network topology(a) can be transformed into a sequential supply
s chain(b) of “quasisuppliers” with potentially complex eigenvalues.
With e*'?=cog ¢) i sin(¢) this implies The couplingb; corresponds to the superdiagonal elemehts;,
. hich ither O 1. It is theref ible to find I
bi(A+ |aB),ui+1e"ﬁi+1+ h? which are either 0 or is therefore possible to find severa

Mioe_iﬁi = 5 5 uncoupled chains of smaller size.
—at+ 2iay t o
VRE + Im2eiPi oscillation amplitudeu?,, of the next downstream supplier
=5 Y > (26) |+1 and greater than the amplitud®of the external forcing,
V(o = a2+ (2ay)’e* | if
where 0

. — > 1, 36

Re =byu%[A COS 1) + aB sin(5,1)] + Y, e 28 o.10) (36)
Im = by®.,[ @B cos Biy) - ASin(B.1)] 27) This resonance effeatorresponds to the case oénvective

— MiMi+1 i+1 i+1)1-

instability. According to formula(28), the bullwhip effect is

Moreover, particularly likely to appear, if the oscillation frequenayof

the consumption rate is close to one of the resonance fre-

[A® + (aB) 2](b|,U«.+1)2+ hPH; + (h)? quenciesw;.
> > (28 I . .
w - )%+ (2ay) Depending on the respective network structure, it can also

happen that the oscillation amplitude f7) is amplified in
the course of timgsee Fig. 4. This case ofabsolute insta-

H, = 2bi,u?+1[A cod Bisy) + aB sin(Biy)]. (29) bility can occur if at least one of the eigenvalugs of the
homogeneous equatio(2l) resulting for h,=b,=0 has a

Finally, we have positive real part. Théup to) 2u eigenvalues

with

Fi=eimp (30 Nz ==yt % - of (37
with depend on théquas) supplieri and determine the temporal
2ary, evolution of the amplitude of deviations from the stationary
@anei=—5_ 2 (31 solution.
One can distinguish various interesting cases.
and (i) If the supply matrixS is symmetric, as for most me-
0 . chanical or electrical oscillator networks, all eigenvaldgs
tanp, = b:)MHl[aB codBi+1) _A_‘S'”(ﬂiﬂ)] 5. (32)  arereal. Consequently, i<y, (i.e., if Ais small enough
bi iy 1[A cOLBi41) + aB sin(Bi+1)] + h, the eigenvalues; , of M are real and negative, correspond-
ing to an overdamped behavior. HoweverBifis too small,
the system behavior may be characterized by damped oscil-
tan(¢; - B;) =tan(6 - Bis1) (33)  lations.
(i) Most natural and man-made supply networks have

For h?=0, we obtain

with directed links, ands is not symmetric. Therefore, some of
aB the eigenvalueg; will normally be complex, and an over-
tané= e (349 damped behavior is untypical. The characteristic behavior is
rather of oscillatory naturgalthough asymmetry does not
i.e., the phase shift betweérandi+1 is just always imply complex eigenvalu¢s3]). For small values of
B, it can even happen that the real part of an eigenvajye
Bi— Bi+1= @~ 6. (35 '
According to Eq.(21), the dynamics of our supply net- X S f\/\ /‘\
work model can surprisingly be reduced to the dynamics of a g% ZOSL\ JANNAN F\ """""
linear(sequentiglsupply chainsee Fig. 3, but with the new 5% jﬂﬂ\/L\/\]\/ ..... U ______ V »»»» \/ ,,,,, \

entities i having the meaning of “quasisuppliersanalo-
gously to “quasispecieq15,16) defined by the linear com-
bination 4(7)=T~*X(7). This transformation makes it pos-  FIG. 4. Empirical example for a temporal amplification in the
sible to define the bullwhip effect for arbitrary supply oscillation amplitude of the weekly order flow of a major company
networks: It occurs if the amplitudﬁi0 is greater than the around its averagéy=0.05, w=27/T with 7=2 weeks.

Time (weeks)
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R(7) =72 [P} (40)
]

around the eigenvaluek of the original matrixE—S. This
radius grows monotonously, but not necessarily linearly in
the parameter with 0< »=<1, which allows to control the
size of the perturbation. Moreove?”=R'PR,, whereR,,

is the orthogonal matrix which transfornis, to a diagonal
matrix D7, i.e.,R}'B,R,=D”. (This assumes a perturbed

. I ) : matrix B, with no degenerate eigenvalueSimilar disks as
network displayed in Fig. @)] with two degenerate real eigenval- for th 7 | B be det ined for th .
ues(squares The eigenvaluey; . of the randomly perturbed sup- or the eigenvaiues ob, can be aetermined for the associ-

ply network (crossepare mostly complex and located within Gers- ated el_genvaluesi'?_r of the perturbed2uX2u) matrix M,
gorin’s disks(large circles. belonging to the perturbealX u matrix B,, [see Eq(13) and

Fig. 5].

In summary, this contribution has shown how supply sys-
tems can be modeled by equations for material flows in net-
works. We could explain the empirically observed bullwhip
reffect as a convective instability phenomenon based on a
resonance effect and generalize it from sequential supply

hains to arbitrary supply networks, as these can be trans-
ormed to supply chains for “quasisuppliers.” However, the
eigenvalues may become complex. The dynamics of supply
networks depends very sensitively on their topology and two

and Jordan normal formsl, i.e., nonvanishing upper- : T
: . : . parametersA and B, which are related to derivatives of the
diagonal elements, . Sequential supply chains and regular “control function” W(N;,dN;/dt) of the delivery rates. In

distribution systems belong to this case, which is character- . ) .
ized by the twou-fold degenerate eigenvalues contrast to most systems of mechanical or electrical oscilla-

tors, supply networks have directed links and are asymmet-
Ne=—(1L+B)2+\(1+B)%4-A (38)  ric. Therefore, most supply networks are expected to show a
- damped or growing oscillatory behavior, even without loops.
independently of the supplieis For small enough values Although negative eigenvalues are found for regular distri-
A< (1+B)?/4, these systems show overdamped behaviopution networks and supply chains, already small perturba-
otherwise damped oscillations. tions of the network structure will cause a spectrum of com-
Note that already very small perturbations in the networkplex eigenvalues, i.e., a qualitative change in the dynamics.
structure can qualitatively change the dynamics of supplyOur current research focuses on the application to empirical
networks. In caséiii), for example, they cause a cluster of input-output data and business cyclgs3], on nonlinear
complex eigenvalues around the two negative eigenvalues properties of supply networks, and applications to disaster
(if A'is small, see Fig. b How can we explain this interest- management with a lack of resourdés.
ing observation? We may ugBersgorin’'s theorenon the
location of eigenvalue$l7]. Applying it to the perturbed ACKNOWLEDGMENTS
matrix

FIG. 5. Spectrum of a supply netwofkhe regular distribution

becomes positive. This implies an amplification of the oscil-
lations in time(until the oscillation amplitude is limited by
nonlinear termp Surprisingly, this also applies to most upper
triangular input matrices, i.e., when no loops in the materia
flows exist.

(iii) Another relevant case is sequential supply chains an
regular supply networkgsee, e.g., Fig. @)]. These are
mostly characterized by degenerate zero eigenvalye®
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